Choice of tip, signal stability, and practical aspects of piezoresponse-force-microscopy.

نویسندگان

  • L F Henrichs
  • J Bennett
  • A J Bell
چکیده

Piezoresponse force-microscopy (PFM) has become the standard tool to investigate ferroelectrics on the micro- and nanoscale. However, reliability of PFM signals is often problematic and their quantification is challenging and thus not widely applied. Here, we present a study of the reproducibility of PFM signals and of the so-called PFM background signal which has been reported in the literature. We find that PFM signals are generally reproducible to certain extents. The PFM signal difference between 180° domains on periodically poled lithium niobate (PPLN) is taken as the reference signal in a large number of measurements, carried out in a low frequency regime (30-70 kHz). We show that in comparison to Pt coated tips, diamond coated tips exhibit improved signal stability, lower background signal, and less imaging artifacts related to PFM which is reflected in the spread of measurements. This is attributed to the improved mechanical stability of the conductive layer. The average deviation of the mean PFM signal is 38.3%, for a diamond coated tip. Although this deviation is relatively high, it is far better than values from the literature which showed a deviation of approx. 73.1%. Additionally, we find that the average deviation of the background signal from 0 is 11.6% of the PPLN domain contrast. Thus, the background signal needs to be taken into account when quantifying PFM signals and should be subtracted from PFM signals. Those results are important for quantification of PFM signals, since PPLN might be used for this purpose when PFM signals measured on PPLN are related to its macroscopic d33 coefficient. Finally, the crucial influence of sample polishing on PFM signals is shown and we recommend to use a multistep polishing route with a final step involving 200 nm sized colloidal silica particles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contrast mechanism maps for piezoresponse force microscopy

Piezoresponse force microscopy (PFM) is one of the most established techniques for the observation and local modification of ferroelectric domain structures on the submicron level. Both electrostatic and electromechanical interactions contribute at the tip-surface junction in a complex manner, which has resulted in multiple controversies in the interpretation of PFM. Here we analyze the influen...

متن کامل

Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces

In order to determine the origin of image contrast in piezoresponse force microscopy (PFM), analytical descriptions of the complex interactions between a small tip and ferroelectric surface are derived for several sets of limiting conditions. Image charge calculations are used to determine potential and field distributions at the tip-surface junction between a spherical tip and an anisotropic d...

متن کامل

Controlling polarization dynamics in a liquid environment: from localized to macroscopic switching in ferroelectrics.

The effect of disorder on polarization switching in ferroelectric materials is studied using piezoresponse force microscopy in a liquid environment. The spatial extent of the electric field created by a biased tip is controlled by the choice of medium, resulting in a transition from localized switching dictated by tip radius, to uniform switching across the film. In the localized regime, the fo...

متن کامل

High Resolution Image with Multi-wall Carbon Nanotube Atomic Force Microscopy Tip (RESEARCH NOTE)

In this paper, a simple and reproducible approach for attaching the multi-wall carbon nanotubes (MWNTs) to the apex of the atomic force microscope probe has been proposed. For this purpose, the dielectrophoresis method was applied due to its simple performance, cheapness and reliability. In this method, various parameters such as voltage, frequency, concentration of carbon nanotubes solution an...

متن کامل

Nanoelectromechanics of polarization switching in piezoresponse force microscopy

Nanoscale polarization switching in ferroelectric materials by piezoresponse force microscopy in weak and strong indentation limits is analyzed using exact solutions for coupled electroelastic fields under the tip. Tip-induced domain switching is mapped on the Landau theory of phase transitions, with domain size as an order parameter. For a point charge interacting with a ferroelectric surface,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Review of scientific instruments

دوره 86 8  شماره 

صفحات  -

تاریخ انتشار 2015